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On the Effects of Scaling of the 
Peaceman-Rachford Method 

By Olof B. Widlund* 

Abstract. The alternating direction method of Peaceman and Rachford is considered for 
elliptic difference schemes of second order and with two independent variables. An earlier 
result of the author's on the rapid convergence of multi-parameter noncommutative prob- 
lems is described and a connection is established between that result and theorems on 
optimal scaling of band matrices. Simple algorithms to decrease the condition number and 
increase the rate of convergence are discussed. 

1. Introduction. In this paper we shall consider the alternatinlg direction implicit 
(ADI) method of Peaceman and Rachford [12] when applied to difference approxi- 
mations to elliptic problems with two independent variables. It is known that this 
method is often quite powerful, especially when different acceleration parameters 
are used in the different iteration steps. Usually, these parameters are chosen in 
a cyclic way. We shall assume that this is the case and denote the cycle length by m. 

It has been proved that the method always converges when m = 1, but for the 
potentially much more powerful multi-parameter case the theory is still not satis- 
factory. Indeed, there seems to be little hope that there will ever be a very general 
convergence theory because of the fact that divergence has been observed in numer- 
ical experiments. 

Under certain additional restrictions on the problem, we can theoretically ex- 
plain the full power of the method. Thus, there exists a very satisfactory theory in 
the case when the two matrices, corresponding to the different independent variables, 
commute. Cf. Varga [15] or Wachspress [16]. The commutativity condition is how- 
ever very limiting because, as was shown by Birkhoff and Varga [1], it imposes 
severe restrictions on the coefficients as well as on the region. The region thus has 
to be rectangular. In fact all problems giving rise to commutative problems can be 
handled by separation-of-variables techniques. It is of interest to note that for sepa- 
rable problems there now exist faster methods than the ADI or SOR methods. Cf. 
Hockney [10] and Buzbee, Golub and Nielson [2] for methods which are in fact 
very efficient computer implementations of the separation-of-variables idea. 

We shall now make a short survey of results for the noncommutative case. (Cf. 
Wachspress [16] for more details.) One of the more interesting results follows from 
an observation by Guilinger [8]. It is thus possible to prove the convergence of 
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the ADI method for a difference approximation to Laplace's equation on convex 
regions for any set of positive parameters. However, the result fails to explain the 
very rapid convergence which has been observed in many applications. Pearcy [13] 
has shown that any given problem can be made to converge by choosing m suffi- 
ciently large. Practical experience also indicates that a choice of a long cycle is a 
cure for divergence. Pearcy's technique is however not refined enough to give realistic 
bounds for the rate of convergence or to explain in any satisfactory way the marked 
difference between one- and multi-parameter ADI. 

A class of noncommutative problems was treated in an earlier paper, Widlund 
[18]. A recipe was given for the choice of parameters to ensure a rate of convergence 
which, for small enough mesh sizes, is as large as those of comparable commutative 
cases. In order to make the proof work, severe restrictions had to be imposed. We 
were thus only able to treat Dirichlet problems on rectangular regions for equations 
with sufficiently smooth coefficients. Furthermore, we had to let the iteration param- 
eters depend on the independent variables in a special way. Numerical experiments 
strongly indicate that such a choice of parameters improves the performance of the 
algorithm, even in much more general situations than those covered by the theory, 
changing divergent or slowly convergent problems into rapidly convergent ones. As 
will be explained in Section 2, the use of parameters depending on the space variables 
is equivalent to a scaling of the matrices of the problems by a diagonal matrix. 
Frequently, one can look upon the scaling procedure as a device which will change 
the original problem into one which is closer to one which can be treated by separa- 
tion-of-variables techniques. 

We shall now outline an idea of the proof of the main result in Widlund [18] 
in order to be able to describe the results of the present paper. Denote by Sm the 
matrix which maps the initial error vector into the error vector after a full cycle of 
m iterations. Our objective is to give a good bound for the spectral radius of this 
matrix. Such a bound can be given in terms of the norm of a matrix S.-' which is 
similar to our original matrix Sm. (We will use the spectral norm as our matrix 
norm throughout this paper.) After a choice of a similarity transformation, we 
write S,.' as a sum of a principal matrix Pm and a remainder matrix Rm. The matrix 
Pm is the product of two matrices each of which corresponds to operations in one 
space direction only. The norm of Pm can therefore be estimated as if we were dealing 
with two one-dimensional problems. In commutative cases Rm 0- O and, by an 
appropriate choice of a similarity transformation, the same is true for m =1 as 
well. Under the assumptions mentioned above we were able to give a good enough 
bound for the norm of Rm. In the present paper, we shall, instead, concentrate our 
attention on minimizing the norm of Pm by an appropriate scaling. It will be seen 
that we will end up with exactly the same recommendation as in Widlund [18], 
where we were concerned primarily with the norm of Rm. 

The idea of scaling ADI problems is far from new. Cf. Wachspress [16], Wachspress 
and Habetler [17], Douglas [4] and Gunn [9] for various ideas and results. 

It would be most interesting if something conclusive could be said in a com- 
parison between the successive overrelaxation methods and an optimally scaled one- 
parameter Peaceman-Rachford algorithm, (in which case the remainder matrix van- 
ishes). No general theorem seems to be true which would rank one method ahead 
of the other. However, numerical experiments seem to indicate that in cases, when 
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the coefficients of the elliptic problem vary very much in magnitude, well scaled 
ADI methods give quite good rates of convergence while the successive overrelaxa- 
tion methods are very time consuming. 

We end this section with a warning. The scaling which is recommended in this 
paper is based on considerations about the norm of Pm only. A scaling can turn 
a commutative problem into a noncommutative one and such a problem might 
conceivably give rise to a divergent ADI algorithm. However, such a situation 
appears to be quite unlikely in problems arising from physics or other applications. 
We also note in this context that it is quite simple to decide whether or not a problem 
is commutative. 

Acknowledgement. The author wants to express his gratitude to Professor Gene 
Golub. Not only did he observe a relation between the results in Widlund (18] and 
those of Forsythe and Straus [5], an observation which started this investigation, 
but he also gave generously of his time discussing the details of this paper. 

2. Presentation of the Algorithm and Earlier Results. Let A,u = f be a system 
of linear equations which has arisen from a difference approximation to a second- 
order selfadjoint elliptic equation with two independent variables and no mixed 
derivatives. The subscript h is a parameter which goes to zero with the mesh size 
of the problem. We assume throughout that A, is the sum of two matrices H and 
V. These are symmetric positive-definite sparse matrices. In order to get an efficient 
algorithm we also assume that H + D and V + D can be inverted rapidly for any 
choice of a diagonal matrix D with positive elements. We shall refrain from going 
into details about how to split A, into the sum of H and V and only mention that 
appropriate splittings are often suggested by the original problem and by efficiency 
considerations. The matrices H and V typically have band structure or, as in the 
case of periodic boundary conditions, almost band structure with only a few nonzero 
elements in each row. The corresponding linear system can therefore be rapidly 
solved with the help of a Cholesky or LU decomposition or in important special 
cases by odd/even reduction (cf. Buzbee, Golub and Nielson [2]). It is well known 
that these procedures can be made numerically stable. 

We refer to Varga [15] for a description of how one sets up difference approxi- 
mations to elliptic problems. It could be mentioned that we can always assure the 
symmetry of our matrices by choosing a method of discretization based on a varia- 
tional formulation. 

For a chosen splitting we thus write our system of linear equations as 

(H + V)u = f. 

The ADI algorithm is defined as follows: Given some initial approximation ui, 
compute t,+l,, n = 1, 2, * * *, by 

(cnHD 2 + H)Un+ 1/2 = (nRHD2 - V)u. + f, 

(wn VD2 + V)U. -+I (CnvD2- H)Un+1/2 + f. 

D is a diagonal matrix with strictly positive elements. The iteration parameters 
(nH and (nV are chosen in a cyclic way, i.e. 

COnH = CsOff, WnV = COIV for ni = I mod mi. 
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We want to choose D and w = lnfH covW}v, n = 1, 2, * * * , m, so that the rate of 
convergence is as large as possible. Our choice can be restricted so that WnI1D2 + 
H and WnvD2 + V are positive definite. 

Denote by Sm the matrix which maps the initial error into the error after a full 
cycle of iterations. Clearly, 

Sm rI (co.vD2 + V)Y(WnvD2 - H)(wOnjD2 + H)-1(Wn D2 V) 
n=1 

if we adopt the convention 

H Ai - Al Al . A1. 

Introduce the matrices 

HD D_.DI1, VD = Dl VD. 

It is easy to show that 
m 

DSmD 1 = I (W,VI + VD)Y1(WnVI - HD)(onHI + HD)Y1(dnHI- VD). 
n-I 

Thus Sm is similar to the error matrix which we get by applying the algorithm with 
D = I to the scaled problem (HD + VD)v g. Let T be some appropriate transfor- 
mation matrix. (Cf. Section 1.) Define S,.' by S,' = TDS.D-'T-'. The spectral radii 
of Sm and S,' are clearly the same. The principal matrix Pm and the remainder matrix 
Rm are defined by 

m m 
Pm = II (cno,I + HD)Y(C0nvI - HD) H (wnVI + VD)'((ConHI - VD) 

n-1 rl 1 

and 

Rm St - Pm. 

We refer to Widlund [18] for a good choice of T and D which enables us to give 
a useful bound for the norm of Rm for the five-point difference approximation to 
a class of problems with smooth coefficients. A further restriction in that paper 
namely that JnH = o,,v can be removed. Our earlier results thus hold true in particular 
for parameters chosen optimally as in Wachspress [16], cf. Section 4. In our earlier 
paper we gave a set of easily computable parameters, such that 

IIP,II ? 1 - C, hll- 

and 

fiRm!! < C2hm, 

provided D2 is chosen to be equal to the diagonal of H or V. C, and C2 are strictly 
positive constants. An immediate consequence is 

p(Sm) < 1 - Clhlh/ + C2h3/2m 

and rapid convergence for small mesh sizes. (p(A) = spectral radius of A.) Here 
h is a meshparameter such that the order of our matrix Ah is a const h-2. 
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We shall now concentrate on making IIPmI1 small by an appropriate choice 
of D and w'. We assume that accurate lower and upper bounds are available for the 
spectra of HD and VD but that nothing useful is known about the location of the 
eigenvalues inside these intervals. In practice such bounds might be computed with 
the help of a Sturm sequence or a symmetric QR subroutine. Cf. Kahan and Varah 
[II]. Repeating standard argument, we get 

| |Pm|I | I(nI D (n' HD|| 
' 

| II (w.mI + HD)'(w9vI - HD) 

X HT(wO.VI ? VD)-'(wA)HI VD) 

_ max f(, I)(c )| 
AELXzj,X"];jA([A,,z, I 'n 1 nAl 

='Om(C A ) , A 1S A). 

Here X, is the smallest eigenvalue of HD or an accurate lower bound of it, Xu the 
largest eigenvalue of HD or an upper bound thereof and Al and yu are the corre- 
sponding bounds for VD. The problem of minimizing qom(co, X,, x'A I, AU) with re- 
spect to co has been solved completely. Cf. Wachspress [16]. 

By the homogeneity of c,m the minimum of 4. with respect to co will depend only 
on three parameters, K(HD) = XU/Xzl K(VD) = /,ul and A = Xu"/,lu. Two of them, 
K(HD) and K(VJ), are equal to or very close to the spectral condition numbersoof 
the matrices HD and VD. Denote by 

+PJ(K(HD), K( VD), A) = min cA, A, u , ). 

It is the purpose of our study to show that an appropriate scaling D of our problem 
will give values for the arguments of Vl/rn such that we are quite close to the best 
possible estimate for IPm I 1. 

3. On the Eigenvalues of Certain Matrices. Let BD =D-'BD-' be symmetric 
and positive definite and denote by K(BD) its spectral condition number defined as 
the ratio between the largest and smallest eigenvalues of the matrix. The diagonal 
matrix D is strictly positive. We say that BD is best conditioned if K(BD) ? K(BD,) 
for all such diagonal matrices D'. The following result follows immediately from 
Forsythe and Straus [5] and Golub [7]. 

LEMMA 3.1. Let B have Young's property A. Then BD is best conditioned if its 
diagonal elements are equal. Furthermore, the value of the diagonal elements is equal 
to the average of the largest and smallest eigenvalues of BD. 

All tridiagonal matrices satisfy property A. This is also true for many matrices 
which correspond to one-dimensional differential operators with periodic boundary 
conditions. 

For more general symmetric positive-definite sparse matrices, we can use the 
following interesting result by van der Sluis [14]. 

LEMMA 3.2. Let B have at most q nonzero elements in any row. Then the condition 
number of the best conditioned matrix is at most a factor q smaller than that of a 
matrix BD which has constant diagonal elements. 
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varn der Sluis also proved that this kind of diagonal scaling can never improve 
the condition number of a matrix by more than a factor n - order of the matrix. 
That result, however, seems to be of less interest to us because we are primarily 
interested in quite large matrices. 

It is clear that the scaling strategy suggested by these results is very attractive 
because of its simplicity. In many cases we are dealing with elliptic problems where 
the coefficients of the second order terms are the same. The diagonals of HD and VD 
will then typically be almost equal. The following bound on possible improvement of 
the condition numbers is then of interest. 

LEMMA 3.3. Let the maximum ratio of any two diagonal elements of B be -Y. Then 
the condition number cannot be improved by more than afactor 7 by making the diagonal 
elements equal. 

The proof follows directly from Courant's min max principle. 
These results will be of interest in our attempts to make i/r small. It will thus 

be shown in Section 4 that Amr will decrease when K(HD) and K(VD) both decrease 
provided A is kept fixed. This naturally leads to the question whether A can be 
expected to change only slightly under diagonal scaling. We shall now describe a 
result in that direction for the important special case of tridiagonal matrices. 

LEMMA 3.4. Let Bh be a class of symmetric tridiagonal matrices the order nA of 
which increases with decreasinig h. For simplicity let h.nA- 1. The elements of Bh 
are such that 

(Bh)jj = f(ih, h) > 0, i 1, 2, nh, 

(B,)sif =-lf(ih, h)(l + o(l)), i=1, 2, **,nh - 1, 

where f(x, h) depends smoothly on h and is piecewise smooth with respect to x E [0, 1]. 
The largest eigenvalue X" of B, will then satisfy 

xu = 2 max f(x, 0)(1 + o(l)). 
E[O .11 

Proof Gersgorin's theorem inmmediately gives that Xu< < 2 max f(x, 0)(1 + o(l)). 
In order to get a reverse inequality we use the variational formulation of the largest 
eigenvalue. An appropriate trial vector can easily be constructed. First, choose for 
a given e> 0 a subinterval such that f(x, h) is smooth and f(x, 0) 2 maxze, .Ii f(x, 0) 
- e. Let all'vector components corresponding to x values outside this interval be 
zero and let the rest of them be i 1 alternatingly. It is easy to see that this will result 
in a good enough lower bound for XU. 

Remark. This proof contains elements quite similar to the arguments which 
are used in derivation of asymptotic expressions for the eigenvalues of two-dimen- 
sional elliptic problems. Cf. Courant, Hilbert [3] or Garabedian [6]. Indeed, inter- 
esting information about the larger eigenvalues of difference equations can be. 
obtained by such an approach. It could also be remarked that the method of trans- 
formations of variables which gives the asymptotic behavior of the eigenvalues for 
continuous two-point boundary-value problems does not seem to have any useful 
discrete analogue. 

Possible applications of Lemma 3.4 should now be obvious. Thus consider a 
problem for which the principal part has the form - a-a(x, y)a,u - aya(x, y)ayu, 
a(x, y) piecewise smooth. Set up the standard five-point difference approximation 
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and make a natural splitting of the matrix. Lemma 3.4 then implies that A will 
change only slightly under a scaling which is such that the elements of the scaling 
matrix are values of a piecewise continuous function in two variables evaluated at 
the corresponding mesh points. Many problems in physics lead to elliptic problems 
the principal parts of which have this simple form provided Cartesian coordinates 
are used. 

Remark. One might believe that if a scaling decreases the condition number of 
HD and VD then the solution of the tridiagonal systems of equations in the ADI scheme 
might become more accurate. However, typically, if we use Gaussian elimination 
we do not want to do any pivoting of positive-definite matrices and, with an un- 
changed pivoting strategy, the quality of the solution will not be improved by scaling. 

4. Recommended Scalings of the Matrices. We shall begin this section by re- 
viewing one aspect of the theory for the optimal choice of w. The components of 
w can be computed easily in the case when m = power of 2; in the general case, 
there exist accurate approximate formulas. We shall rely heavily on Wachspress' 
[16] presentation of the theory in this section. One can compute the value of 
I/m(K(HD), K(VD), A), for given Xl, X", .i, and IL', in terms of a parameter k', 0 < k' < 1, 

defined by 

k' 1/((m + 1) + (m'(mn' + 2))1/2), 

where 

inl' =2(XU - Xj)(AU - _l)/(XU + AU)(X + gl). 

For any cycle length m, there exists a strictly positive constant Cm such that 

41m = ((1 - Cm(k' )l/2m)/(1 + Cm(k,)1/2m))2, 

when the mesh size goes to zero. Our problem is therefore reduced to the study of 
the value of k', which measures how well conditioned our problem is with respect 
to the ADI algorithm. 

LEMMA 4.1. Let Xu//U' be fixed. Then k' increases if both VU/A and A'A/pu decrease. 
To prove this lemma we rewrite m' as 

(4.1) m' 2~ (pU Xi ANX+pU(U + 
) 

and note that a decreasing m' will increase the value of k'. 
We can now give an explicit recommendation for a scaling, when the principal 

part of the differential operator has the form -a_a(x, y)adu - a,a(x, y)a,,u and 
the matrices HD and VD are similar, via permutations, to tridiagonal matrices. It 
follows immediately from Lemmas 3.1, 3.3, 3.4 and 4.1 that a good choice for D2 is 
the diagonal of H or V. 

Remark. This scaling is close to the one suggested by Douglas [4]. He also gave 
the scaling an interpretation in terms of parabolic equations. To any positive-definite 
elliptic problem one can associate many parabolic equations whose steady-state 
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solution is equal to the solution of the elliptic problem. Each scaling corresponds 
to a particular choice of a parabolic problem. 

Several scaling strategies now suggest themselves for the general problem. One, 
which for smooth enough a(x, y) and small mesh sizes would lead to an almost 
identical algorithm in the special case above, amounts to choosing D2 equal to the 
diagonal of H + V. There are, however, some objections to such a strategy. On 
the basis of our earlier results, Widlund [18], and numerical experiments, it seems 
as if an attempt should be made to scale the original problem so that the modified 
problem could "almost" be treated by a separation-of-variables technique, provided 
the region happened to be appropriate. Choosing D2 equal to the diagonal of H + 
V in the case of a diffusion problem written in polar coordinates would thus be 
quite unnatural. In that case, it seems much more natural to choose D2 equal to 
the diagonal of the matrix corresponding to the derivatives with respect to the angle. 
By the results of Section 3, such a scaling would either minimize the condition num- 
ber of one of our reLatrices or at least make it quite well conditioned. Such a strategy 
also coincides with the one suggested by the analysis in Widlund [18]. 

The recommended strategy would therefore be to choose D2 equal to the diagonal 
of H or V. We cannot support this choice as strongly in the general case as in the 
special case above, because X"/gA might vary a great deal. However, examining the 
formula (4.1) again, we see that not only can we compare the values of k' for a scaled 
and an unscaled case, if we have eigenvalue bounds available, but we can also give 
an upper bound for m', and thus a lower bound for k', in terms of the condition 
numbers of HD and VD alone. Varying xu/gU, we thus find that 

in' ~ 2 - - A 

()1/2 +(1/2)2 

with equality only for Xu/gu _ This formula should give a 
realistic estimate of the size of m' in many cases. A more accurate comparison can 
of course be given if we have information about the size of Xu/Au and how it changes 
under scaling. It follows from Lemma 3.4 and its proof that a Gersgorin estimate 
often gives an accurate bound for the largest eigenvalues. It is clear from formula 
(4.1) that, if we can show that Xu/gAu does not change very much and at least one 
of the condition numbers decreases a lot, then we can be assured of a larger value 
for k'. 
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